

Python 3D FDTD Simulator

A 3D electromagnetic FDTD simulator written in Python. The FDTD simulator has
an optional PyTorch backend, enabling FDTD simulations on a GPU.

Docs

	Examples
	00. Quick Start

	01. Basic Example

	02. Absorbing Object

	03. Objects of arbitrary shape

	04. Performance Profiling

	05. Lenses and analysing lensing actions

	06. GRIN medium and analysing refraction

	fdtd package
	backend module

	boundaries module

	detectors module

	grid module

	objects module

	sources module

Installation

The fdtd-library can be installed with pip:

pip install fdtd

Dependencies

	python 3.6+

	numpy

	matplotlib

	tqdm

	pytorch (optional)

Quick intro

The fdtd library is simply imported as follows:

import fdtd

Setting the backend

fdtd.backend

The fdtd library allows to choose a backend. The "numpy" backend is the
default one, but there are also several additional PyTorch backends:

	numpy (defaults to float64 arrays)

	torch (defaults to float64 tensors)

	torch.float32

	torch.float64

	torch.cuda (defaults to float64 tensors)

	torch.cuda.float32

	torch.cuda.float64

For example, this is how to choose the torch backend:

fdtd.set_backend("torch")

In general, the numpy backend is preferred for standard CPU calculations
with float64 precision. In general, float64 precision is always
preferred over float32 for FDTD simulations, however, float32 might
give a significant performance boost.

The cuda backends are only available for computers with a GPU.

The FDTD-grid

fdtd.grid

The FDTD grid defines the simulation region.

signature
fdtd.Grid(
 shape: Tuple[Number, Number, Number],
 grid_spacing: float = 155e-9,
 permittivity: float = 1.0,
 permeability: float = 1.0,
 courant_number: float = None,
)

A grid is defined by its shape, which is just a 3D tuple of
Number-types (integers or floats). If the shape is given in floats, it
denotes the width, height and length of the grid in meters. If the shape is
given in integers, it denotes the width, height and length of the grid in terms
of the grid_spacing. Internally, these numbers will be translated to three
integers: grid.Nx, grid.Ny and grid.Nz.

A grid_spacing can be given. For stability reasons, it is recommended to
choose a grid spacing that is at least 10 times smaller than the _smallest_
wavelength in the grid. This means that for a grid containing a source with
wavelength 1550nm and a material with refractive index of 3.1, the
recommended minimum grid_spacing turns out to be 50pm

For the permittivity and permeability floats or arrays with the
following shapes

	(grid.Nx, grid.Ny, grid.Nz)

	or (grid.Nx, grid.Ny, grid.Nz, 1)

	or (grid.Nx, grid.Ny, grid.Nz, 3)

are expected. In the last case, the shape implies the possibility for different
permittivity for each of the major axes (so-called _uniaxial_ or _biaxial_
materials). Internally, these variables will be converted (for performance
reasons) to their inverses grid.inverse_permittivity array and a
grid.inverse_permeability array of shape (grid.Nx, grid.Ny, grid.Nz, 3). It
is possible to change those arrays after making the grid.

Finally, the courant_number of the grid determines the relation between the
time_step of the simulation and the grid_spacing of the grid. If not given,
it is chosen to be the maximum number allowed by the Courant-Friedrichs-Lewy Condition [https://en.wikipedia.org/wiki/Courant–Friedrichs–Lewy_condition]:
1 for 1D simulations, 1/√2 for 2D simulations and 1/√3 for 3D
simulations (the dimensionality will be derived by the shape of the grid). For
stability reasons, it is recommended not to change this value.

grid = fdtd.Grid(
 shape = (25e-6, 15e-6, 1), # 25um x 15um x 1 (grid_spacing) --> 2D FDTD
)
print(grid)

Grid(shape=(161,97,1), grid_spacing=1.55e-07, courant_number=0.70)

Objects

fdtd.objects

An other option to locally change the permittivity or permeability in the
grid is to add an Object to the grid.

signature
fdtd.Object(
 permittivity: Tensorlike,
 name: str = None
)

An object defines a part of the grid with modified update equations, allowing
to introduce for example absorbing materials or biaxial materials for which
mixing between the axes are present through Pockels coefficients or many
more. In this case we’ll make an object with a different permittivity than
the grid it is in.

Just like for the grid, the Object expects a permittivity to be a floats or
an array of the following possible shapes

	(obj.Nx, obj.Ny, obj.Nz)

	or (obj.Nx, obj.Ny, obj.Nz, 1)

	or (obj.Nx, obj.Ny, obj.Nz, 3)

Note that the values obj.Nx, obj.Ny and obj.Nz are not given to the
object constructor. They are in stead derived from its placing in the grid:

grid[11:32, 30:84, 0] = fdtd.Object(permittivity=1.7**2, name="object")

Several things happen here. First of all, the object is given the space
[11:32, 30:84, 0] in the grid. Because it is given this space, the object’s
Nx, Ny and Nz are automatically set. Furthermore, by supplying a name to
the object, this name will become available in the grid:

print(grid.object)

Object(name='object')
 @ x=11:32, y=30:84, z=0:1

A second object can be added to the grid:

grid[13e-6:18e-6, 5e-6:8e-6, 0] = fdtd.Object(permittivity=1.5**2)

Here, a slice with floating point numbers was chosen. These floats will be
replaced by integer Nx, Ny and Nz during the registration of the object.
Since the object did not receive a name, the object won’t be available as an
attribute of the grid. However, it is still available via the grid.objects
list:

print(grid.objects)

[Object(name='object'), Object(name=None)]

This list stores all objects (i.e. of type fdtd.Object) in the order that
they were added to the grid.

Sources

fdtd.sources

Similarly as to adding an object to the grid, an fdtd.LineSource can also
be added:

signature
fdtd.LineSource(
 period: Number = 15, # timesteps or seconds
 amplitude: float = 1.0,
 phase_shift: float = 0.0,
 name: str = None,
)

And also just like an fdtd.Object, an fdtd.LineSource size is defined by its
placement on the grid:

grid[7.5e-6:8.0e-6, 11.8e-6:13.0e-6, 0] = fdtd.LineSource(
 period = 1550e-9 / (3e8), name="source"
)

However, it is important to note that in this case a LineSource is added to
the grid, i.e. the source spans the diagonal of the cube defined by the slices.
Internally, these slices will be converted into lists to ensure this behavior:

print(grid.source)

LineSource(period=14, amplitude=1.0, phase_shift=0.0, name='source')
 @ x=[48, ... , 51], y=[76, ... , 83], z=[0, ... , 0]

Note that one could also have supplied lists to index the grid in the first
place. This feature could be useful to create a LineSource of arbitrary
shape.

Detectors

fdtd.detectors

signature
fdtd.LineDetector(
 name=None
)

Adding a detector to the grid works the same as adding a source

grid[12e-6, :, 0] = fdtd.LineDetector(name="detector")
print(grid.detector)

LineDetector(name='detector')
 @ x=[77, ... , 77], y=[0, ... , 96], z=[0, ... , 0]

Boundaries

fdtd.boundaries

signature
fdtd.PML(
 a: float = 1e-8, # stability factor
 name: str = None
)

Although, having an object, source and detector to simulate is in principle
enough to perform an FDTD simulation, One also needs to define a grid boundary
to prevent the fields to be reflected. One of those boundaries that can be
added to the grid is a Perfectly Matched Layer [https://en.wikipedia.org/wiki/Perfectly_matched_layer]: or PML. These
are basically absorbing boundaries.

x boundaries
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")

y boundaries
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")

Grid Summary

A simple summary of the grid can be shown by printing out the grid:

print(grid)

Grid(shape=(161,97,1), grid_spacing=1.55e-07, courant_number=0.70)

sources:
 LineSource(period=14, amplitude=1.0, phase_shift=0.0, name='source')
 @ x=[48, ... , 51], y=[76, ... , 83], z=[0, ... , 0]

detectors:
 LineDetector(name='detector')
 @ x=[77, ... , 77], y=[0, ... , 96], z=[0, ... , 0]

boundaries:
 PML(name='pml_xlow')
 @ x=0:10, y=:, z=:
 PML(name='pml_xhigh')
 @ x=-10:, y=:, z=:
 PML(name='pml_ylow')
 @ x=:, y=0:10, z=:
 PML(name='pml_yhigh')
 @ x=:, y=-10:, z=:

objects:
 Object(name='object')
 @ x=11:32, y=30:84, z=0:1
 Object(name=None)
 @ x=84:116, y=32:52, z=0:1

Running a simulation

Running a simulation is as simple as using the grid.run method.

grid.run(
 total_time: Number,
 progress_bar: bool = True
)

Just like for the lengths in the grid, the total_time of the simulation
can be specified as an integer (number of time_steps) or as a float (in
seconds).

grid.run(total_time=100)

Grid visualization

Let’s visualize the grid. This can be done with the grid.visualize method:

signature
grid.visualize(
 grid,
 x=None,
 y=None,
 z=None,
 cmap="Blues",
 pbcolor="C3",
 pmlcolor=(0, 0, 0, 0.1),
 objcolor=(1, 0, 0, 0.1),
 srccolor="C0",
 detcolor="C2",
 show=True,
)

This method will by default visualize all objects in the grid, as well as the
field intensity at the current time_step at a certain x, y OR z-plane. By
setting show=False, one can disable the immediate visualization of the
matplotlib image.

grid.visualize(z=0)

[image: _images/grid.png]

Examples

	00. Quick Start
	Imports

	Setting the backend

	The FDTD-grid

	Adding an object to the grid

	Adding a source to the grid

	Adding a detector to the grid

	Adding grid boundaries

	Grid summary

	Running a simulation

	Grid visualization

	01. Basic Example
	Imports

	Set Backend

	Constants

	Simulation

	Run simulation

	Visualization

	02. Absorbing Object
	Imports

	Constants

	Grid setup

	Simulation without absorption:

	Visualization

	03. Objects of arbitrary shape
	Imports

	Grid Setup

	Circular Object

	Run Simulation

	Visualize

	04. Performance Profiling
	Imports

	Set Backend

	Constants

	Setup Simulation

	Setup LineProfiler

	Run Simulation

	Profiler Results

	Visualization

	05. Lenses and analysing lensing actions
	Imports

	Grid

	Objects

	Source

	Detectors

	Simulation

	Analyse

	06. GRIN medium and analysing refraction
	Imports

	Grid

	Objects

	Source

	Detectors

	Saving grid geometry

	Simulation

	Analyse

00. Quick Start

Imports

the fdtd library is simply imported as follows:

[1]:

import fdtd

Setting the backend

the fdtd library allows for setting a backend. There exist a Numpy backend and several PyTorch backends. The available backends are: - "numpy" (defaults to float64 arrays) - "torch" (defaults to float64 tensors) - "torch.float32" - "torch.float64" - "torch.cuda" (defaults to float64 tensors) - "torch.cuda.float32" - "torch.cuda.float64"

In general, the "numpy" backend is preferred for standard CPU calculations with "float64" precision. In general, "float64" precision is always preferred for FDTD simulations, however, "float32" might give a significant performance boost.

The "cuda" backends are only available for computers with a GPU.

[2]:

fdtd.set_backend("numpy")

The FDTD-grid

The FDTD grid defines the simulation region.

signature
fdtd.Grid(
 shape: Tuple[Number, Number, Number],
 grid_spacing: float = 155e-9,
 permittivity: float = 1.0,
 permeability: float = 1.0,
 courant_number: float = None,
)

A grid is defined by its shape, which is just a 3D tuple of Number-types (integers or floats). If the shape is given in floats, it denotes the width, height and length of the grid in meters. If the shape is given in integers, it denotes the width, height and length of the grid in terms of the grid_spacing. Internally, these numbers will be translated to three integers: grid.Nx, grid.Ny and grid.Nz.

A grid_spacing can be given. For stability reasons, it is recommended to choose a grid spacing that is at least 10 times smaller than the smallest wavelength in the grid. This means that for a grid containing a source with wavelength 1550nm and a material with refractive index of 3.1, the recommended minimum grid_spacing turns out to be 50nm

For the permittivity and permeability floats or arrays with the following shapes

	(grid.Nx, grid.Ny, grid.Nz)

	or (grid.Nx, grid.Ny, grid.Nz, 1)

	or (grid.Nx, grid.Ny, grid.Nz, 3)

are expected. In the last case, the shape implies the possibility for different permittivity for each of the major axes (so-called uniaxial or biaxial materials). Internally, these variables will be converted (for performance reasons) to their inverses grid.inverse_permittivity array and a grid.inverse_permeability array of shape (grid.Nx, grid.Ny, grid.Nz, 3). It is possible to change those arrays after making the grid.

Finally, the courant_number of the grid determines the relation between the time_step of the simulation and the grid_spacing of the grid. If not given, it is chosen to be the maximum number allowed by the Courant-Friedrichs-Lewy Condition [https://en.wikipedia.org/wiki/Courant–Friedrichs–Lewy_condition]: 1 for 1D simulations, 1/√2 for 2D simulations and 1/√3 for 3D simulations (the dimensionality will be derived by the shape of the grid). For stability
reasons, it is recommended not to change this value.

[3]:

grid = fdtd.Grid(
 shape = (25e-6, 15e-6, 1), # 25um x 15um x 1 (grid_spacing) --> 2D FDTD
)

print(grid)

Grid(shape=(161,97,1), grid_spacing=1.55e-07, courant_number=0.70)

Adding an object to the grid

An other option to locally change the permittivity or permeability in the grid is to add an Object to the grid.

signature
fdtd.Object(
 permittivity: Tensorlike,
 name: str = None
)

An object defines a part of the grid with modified update equations, allowing to introduce for example absorbing materials or biaxial materials for which mixing between the axes are present through Pockels coefficients or many more. In this case we’ll make an object with a different permittivity than the grid it is in.

Just like for the grid, the Object expects a permittivity to be a floats or an array of the following possible shapes

	(obj.Nx, obj.Ny, obj.Nz)

	or (obj.Nx, obj.Ny, obj.Nz, 1)

	or (obj.Nx, obj.Ny, obj.Nz, 3)

Note that the values obj.Nx, obj.Ny and obj.Nz are not given to the object constructor. They are in stead derived from its placing in the grid:

[4]:

grid[11:32, 30:84, 0] = fdtd.Object(permittivity=1.7**2, name="object")

Several things happen here. First of all, the object is given the space [11:32, 30:84, 0] in the grid. Because it is given this space, the object’s Nx, Ny and Nz are automatically set. Furthermore, by supplying a name to the object, this name will become available in the grid:

[5]:

print(grid.object)

 Object(name='object')
 @ x=11:32, y=30:84, z=0:1

We can add a second object to the grid:

[6]:

grid[13e-6:18e-6, 5e-6:8e-6, 0] = fdtd.Object(permittivity=1.5**2)

Here we chose to slice the grid with floating point numbers, which will be replaced by integer Nx, Ny and Nz during the registration of the object. Since we didnt give the object a name, the object won’t be available to us as an attribute of the grid. However, it is still available to us via the grid.objects list:

[7]:

print(grid.objects)

[Object(name='object'), Object(name=None)]

This list stores all objects (i.e. of type fdtd.Object) in the order that they were added to the grid.

Adding a source to the grid

Similarly as to adding an object to the grid, an fdtd.LineSource can also be added:

signature
fdtd.LineSource(
 period: Number = 15, # timesteps or seconds
 amplitude: float = 1.0,
 phase_shift: float = 0.0,
 name: str = None,
)

Similarly to an fdtd.Object, an fdtd.Source size is defined by its placement on the grid:

[8]:

grid[7.5e-6:8.0e-6, 11.8e-6:13.0e-6, 0] = fdtd.LineSource(
 period = 1550e-9 / (3e8), name="source"
)

However, it is important to note that in this case we are adding a LineSource, i.e. the source spans the diagonal of the cube defined by the slices. Internally, these slices will be converted into lists to ensure the expected behavior:

[9]:

print(grid.source)

 LineSource(period=14, amplitude=1.0, phase_shift=0.0, name='source')
 @ x=[48, ... , 51], y=[76, ... , 83], z=[0, ... , 0]

Note that one could have also supplied lists to index the grid in the first place. This feature could be useful to create a LineSource of arbitrary shape.

Adding a detector to the grid

Adding a detector to the grid works the same as adding a source

signature
fdtd.LineDetector(
 name=None
)

[10]:

grid[12e-6, :, 0] = fdtd.LineDetector(name="detector")

[11]:

print(grid.detector)

 LineDetector(name='detector')
 @ x=[77, ... , 77], y=[0, ... , 96], z=[0, ... , 0]

Adding grid boundaries

Although, having an object, source and detector to simulate is in principle enough to perform an FDTD simulation, One also needs to define a grid boundary to prevent the fields to be reflected. One of those boundaries that can be added to the grid is a Perfectly Matched Layer [https://en.wikipedia.org/wiki/Perfectly_matched_layer] or PML. These are basically absorbing boundaries.

fdtd.PML(
 a: float = 1e-8, # stability factor
 name: str = None
)

[12]:

x boundaries
grid[0, :, :] = fdtd.PeriodicBoundary(name="xbounds")
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")

y boundaries
grid[:, 0, :] = fdtd.PeriodicBoundary(name="ybounds")
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")

Grid summary

A simple summary of the grid can be shown by printing out the grid:

[13]:

print(grid)

Grid(shape=(161,97,1), grid_spacing=1.55e-07, courant_number=0.70)

sources:
 LineSource(period=14, amplitude=1.0, phase_shift=0.0, name='source')
 @ x=[48, ... , 51], y=[76, ... , 83], z=[0, ... , 0]

detectors:
 LineDetector(name='detector')
 @ x=[77, ... , 77], y=[0, ... , 96], z=[0, ... , 0]

boundaries:
 PML(name='pml_xlow')
 @ x=0:10, y=:, z=:
 PML(name='pml_xhigh')
 @ x=-10:, y=:, z=:
 PML(name='pml_ylow')
 @ x=:, y=0:10, z=:
 PML(name='pml_yhigh')
 @ x=:, y=-10:, z=:

objects:
 Object(name='object')
 @ x=11:32, y=30:84, z=0:1
 Object(name=None)
 @ x=84:116, y=32:52, z=0:1

Running a simulation

Running a simulation is as simple as using the grid.run method.

grid.run(
 total_time: Number,
 progress_bar: bool = True
)

Just like for the the lengths in the grid, the total_time of the simulation can be specified as an integer (number of time_steps) or as a float (in seconds).

[14]:

grid.run(total_time=100)

100%|██████████| 100/100 [00:00<00:00, 516.89it/s]

Grid visualization

Let’s visualize the grid. This can be done with the grid.visualize method:

signature
grid.visualize(
 grid,
 x=None,
 y=None,
 z=None,
 cmap="Blues",
 pbcolor="C3",
 pmlcolor=(0, 0, 0, 0.1),
 objcolor=(1, 0, 0, 0.1),
 srccolor="C0",
 detcolor="C2",
 show=True,
)

This method will by default visualize all objects in the grid, as well as the current field intensity at a certain x, y OR z-plane. By setting show=False, one can disable the immediate visualization of matplotlib.

[15]:

grid.visualize(z=0, show=False)
import matplotlib.pyplot as plt

[image: ../_images/examples_00-quick-start_40_0.png]

01. Basic Example

A simple example on how to use the FDTD Library

Imports

[1]:

import matplotlib.pyplot as plt

import fdtd
import fdtd.backend as bd

Set Backend

[2]:

fdtd.set_backend("numpy")

Constants

[3]:

WAVELENGTH = 1550e-9
SPEED_LIGHT: float = 299_792_458.0 # [m/s] speed of light

Simulation

create FDTD Grid

[4]:

grid = fdtd.Grid(
 (2.5e-5, 1.5e-5, 1),
 grid_spacing=0.1 * WAVELENGTH,
 permittivity=1.0,
 permeability=1.0,
)

boundaries

[5]:

grid[0, :, :] = fdtd.PeriodicBoundary(name="xbounds")
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")

grid[:, 0, :] = fdtd.PeriodicBoundary(name="ybounds")
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")

grid[:, :, 0] = fdtd.PeriodicBoundary(name="zbounds")

sources

[6]:

grid[50:55, 70:75, 0] = fdtd.LineSource(
 period=WAVELENGTH / SPEED_LIGHT, name="linesource"
)
grid[100, 60, 0] = fdtd.PointSource(
 period=WAVELENGTH / SPEED_LIGHT, name="pointsource",
)

detectors

[7]:

grid[12e-6, :, 0] = fdtd.LineDetector(name="detector")

objects

[8]:

grid[11:32, 30:84, 0:1] = fdtd.AnisotropicObject(permittivity=2.5, name="object")

Run simulation

[9]:

grid.run(50, progress_bar=False)

Visualization

[10]:

fig, axes = plt.subplots(2, 3, squeeze=False)
titles = ["Ex: xy", "Ey: xy", "Ez: xy", "Hx: xy", "Hy: xy", "Hz: xy"]

fields = bd.stack(
 [
 grid.E[:, :, 0, 0],
 grid.E[:, :, 0, 1],
 grid.E[:, :, 0, 2],
 grid.H[:, :, 0, 0],
 grid.H[:, :, 0, 1],
 grid.H[:, :, 0, 2],
]
)

m = max(abs(fields.min().item()), abs(fields.max().item()))

for ax, field, title in zip(axes.ravel(), fields, titles):
 ax.set_axis_off()
 ax.set_title(title)
 ax.imshow(bd.numpy(field), vmin=-m, vmax=m, cmap="RdBu")

plt.show()

[image: ../_images/examples_01-basic-example_21_0.png]

[11]:

plt.figure()
grid.visualize(z=0)

[image: ../_images/examples_01-basic-example_22_0.png]

02. Absorbing Object

A simple example using the AbsorbingObject

Imports

[1]:

import matplotlib.pyplot as plt

import fdtd
fdtd.set_backend("numpy")

Constants

[2]:

WAVELENGTH = 1550e-9
SPEED_LIGHT: float = 299_792_458.0 # [m/s] speed of light

Grid setup

[3]:

create FDTD Grid
grid = fdtd.Grid(
 (1.5e-5, 1.5e-5, 1), # 2D grid
 grid_spacing=0.1 * WAVELENGTH,
 permittivity=2.5, # same as object
)

sources
grid[15, :] = fdtd.LineSource(period=WAVELENGTH / SPEED_LIGHT, name="source")

detectors
grid[-15, :, 0] = fdtd.LineDetector(name="detector")

x boundaries
grid[0, :, :] = fdtd.PeriodicBoundary(name="xbounds")
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")

y boundaries
grid[:, 0, :] = fdtd.PeriodicBoundary(name="ybounds")
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")

The absorbing object fills the whole grid
grid[10:-10, 10:-10, :] = fdtd.AbsorbingObject(
 permittivity=2.5, conductivity=1e-6, name="absorbin_object"
)

Simulation without absorption:

[4]:

grid.run(250, progress_bar=False)

Visualization

[5]:

grid.visualize(z=0)

[image: ../_images/examples_02-absorbing-object_10_0.png]

03. Objects of arbitrary shape

Imports

[1]:

import fdtd
import numpy as np
import matplotlib.pyplot as plt
fdtd.set_backend("numpy")

Grid Setup

[2]:

grid = fdtd.Grid(
 shape = (300, 300, 1), # 25um x 15um x 1 (grid_spacing) --> 2D FDTD
 grid_spacing = 1e-7,
 permittivity = 1,
)

grid[50:250, 50, 0] = fdtd.LineSource(
 period = 1550e-9 / (3e8), name="source"
)

grid[50:250, 250, 0] = fdtd.LineDetector(name="detector")

grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")

Circular Object

[3]:

refractive_index = 1.7
x = y = np.linspace(-1,1,100)
X, Y = np.meshgrid(x, y)
circle_mask = X**2 + Y**2 < 1
permittivity = np.ones((100,100,1))
permittivity += circle_mask[:,:,None]*(refractive_index**2 - 1)
grid[170:270, 100:200, 0] = fdtd.Object(permittivity=permittivity, name="object")

Run Simulation

[4]:

grid.run(total_time=500)

100%|██████████| 500/500 [00:03<00:00, 142.14it/s]

Visualize

Even though visualization of a circular object is not implemented (for now), one can clearly see the focussing.

[5]:

grid.visualize(z=0)

[image: ../_images/examples_03-objects-of-arbitrary-shape_11_0.png]

[6]:

grid.object.inverse_permittivity.min()

[6]:

0.34602076124567477

04. Performance Profiling

We can profile the performance with a 3D FDTD simulation:

Imports

[1]:

import matplotlib.pyplot as plt
from line_profiler import LineProfiler

import fdtd
import fdtd.backend as bd

Set Backend

Let’s profile the impact of the backend. These are the possible backends:

	numpy (defaults to float64 arrays)

	torch (defaults to float64 tensors)

	torch.float32

	torch.float64

	torch.cuda (defaults to float64 tensors)

	torch.cuda.float32

	torch.cuda.float64

[2]:

fdtd.set_backend("numpy")

In general, the numpy backend is preferred for standard CPU calculations with "float64" precision as it is slightly faster than torch backend on CPU. However, a significant performance improvement can be obtained by choosing torch.cuda on large enough grids.

Note that, in FDTD, float64 precision is generally preferred over float32 to ensure numerical stability and prevent numerical dispersion. If this is of no concern to you, you can opt for float32 precision, which especially on a GPU might yield a significant performance boost.

Constants

[3]:

WAVELENGTH = 1550e-9
SPEED_LIGHT: float = 299_792_458.0 # [m/s] speed of light

Setup Simulation

create FDTD Grid

[4]:

N = 100

grid = fdtd.Grid(
 (N, N, N),
 grid_spacing=0.05 * WAVELENGTH,
 permittivity=1.0,
 permeability=1.0,
)

add boundaries

[5]:

x boundaries
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")

y boundaries
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")

z boundaries
grid[:, :, 0:10] = fdtd.PML(name="pml_zlow")
grid[:, :, -10:] = fdtd.PML(name="pml_zhigh")

add sources

[6]:

grid[10+N//10:10+N//10, :, :] = fdtd.PlaneSource(
 period=WAVELENGTH / SPEED_LIGHT, name="source"
)

add objects

[7]:

grid[10+N//5:4*N//5-10, 10+N//5:4*N//5-10, 10+N//5:4*N//5-10] = fdtd.Object(permittivity=2.5, name="center_object")

grid summary

[8]:

print(grid)

Grid(shape=(100,100,100), grid_spacing=7.75e-08, courant_number=0.57)

sources:
 PlaneSource(period=35, amplitude=1.0, phase_shift=0.0, name='source', polarization='z')
 @ x=[20, ... , 21], y=[0, ... , 100], z=[0, ... , 100]

boundaries:
 PML(name='pml_xlow')
 @ x=0:10, y=:, z=:
 PML(name='pml_xhigh')
 @ x=-10:, y=:, z=:
 PML(name='pml_ylow')
 @ x=:, y=0:10, z=:
 PML(name='pml_yhigh')
 @ x=:, y=-10:, z=:
 PML(name='pml_zlow')
 @ x=:, y=:, z=0:10
 PML(name='pml_zhigh')
 @ x=:, y=:, z=-10:

objects:
 Object(name='center_object')
 @ x=30:70, y=30:70, z=30:70

Setup LineProfiler

create and enable profiler

[9]:

profiler = LineProfiler()
profiler.add_function(grid.update_E)
profiler.enable()

Run Simulation

run simulation

[10]:

grid.run(50, progress_bar=True)

100%|██████████| 50/50 [00:12<00:00, 3.88it/s]

Profiler Results

print profiler summary

[11]:

profiler.print_stats()

Timer unit: 1e-09 s

Total time: 6.38501 s
File: /home/docs/checkouts/readthedocs.org/user_builds/fdtd/checkouts/latest/docs/examples/fdtd/grid.py
Function: update_E at line 275

Line # Hits Time Per Hit % Time Line Contents
==
 275 def update_E(self):
 276 """update the electric field by using the curl of the magnetic field"""
 277
 278 # update boundaries: step 1
 279 300 427907.0 1426.4 0.0 for boundary in self.boundaries:
 280 300 2408621660.0 8028738.9 37.7 boundary.update_phi_E()
 281
 282 50 2718961941.0 54379238.8 42.6 curl = curl_H(self.H)
 283 50 736952282.0 14739045.6 11.5 self.E += self.courant_number * self.inverse_permittivity * curl
 284
 285 # update objects
 286 50 203296.0 4065.9 0.0 for obj in self.objects:
 287 50 69423513.0 1388470.3 1.1 obj.update_E(curl)
 288
 289 # update boundaries: step 2
 290 300 350965.0 1169.9 0.0 for boundary in self.boundaries:
 291 300 446595931.0 1488653.1 7.0 boundary.update_E()
 292
 293 # add sources to grid:
 294 50 106593.0 2131.9 0.0 for src in self.sources:
 295 50 3329331.0 66586.6 0.1 src.update_E()
 296
 297 # detect electric field
 298 50 41180.0 823.6 0.0 for det in self.detectors:
 299 det.detect_E()

Visualization

[12]:

plt.figure()
grid.visualize(z=N//2)

[image: ../_images/examples_04-performance-profiling_31_0.png]

05. Lenses and analysing lensing actions

submitted by substancia [https://github.com/substancia], adapted by flaport [https://github.com/flaport]

Imports

[1]:

import os
import fdtd
import numpy as np
import matplotlib.pyplot as plt

Grid

[2]:

grid = fdtd.Grid(shape=(260, 15.5e-6, 1), grid_spacing=77.5e-9)
x boundaries
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")
y boundaries
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")
simfolder = grid.save_simulation("Lenses") # initializing environment to save simulation data
print(simfolder)

/home/docs/checkouts/readthedocs.org/user_builds/fdtd/checkouts/latest/docs/examples/fdtd_output/fdtd_output_2023-5-23-13-21-50 (Lenses)

Objects

defining a biconvex lens

[3]:

x, y = np.arange(-200, 200, 1), np.arange(190, 200, 1)
X, Y = np.meshgrid(x, y)
lens_mask = X ** 2 + Y ** 2 <= 40000
for j, col in enumerate(lens_mask.T):
 for i, val in enumerate(np.flip(col)):
 if val:
 grid[30 + i : 50 - i, j - 100 : j - 99, 0] = fdtd.Object(permittivity=1.5 ** 2, name=str(i) + "," + str(j))
 break

Source

using a continuous source (not a pulse)

[4]:

grid[15, 50:150, 0] = fdtd.LineSource(period=1550e-9 / (3e8), name="source")

Detectors

using a BlockDetector

[5]:

grid[80:200, 80:120, 0] = fdtd.BlockDetector(name="detector")

Saving grid geometry for future reference

[6]:

with open(os.path.join(simfolder, "grid.txt"), "w") as f:
 f.write(str(grid))
 wavelength = 3e8/grid.source.frequency
 wavelengthUnits = wavelength/grid.grid_spacing
 GD = np.array([grid.x, grid.y, grid.z])
 gridRange = [np.arange(x/grid.grid_spacing) for x in GD]
 objectRange = np.array([[gridRange[0][x.x], gridRange[1][x.y], gridRange[2][x.z]] for x in grid.objects], dtype=object).T
 f.write("\n\nGrid details (in wavelength scale):")
 f.write("\n\tGrid dimensions: ")
 f.write(str(GD/wavelength))
 f.write("\n\tSource dimensions: ")
 f.write(str(np.array([grid.source.x[-1] - grid.source.x[0] + 1, grid.source.y[-1] - grid.source.y[0] + 1, grid.source.z[-1] - grid.source.z[0] + 1])/wavelengthUnits))
 f.write("\n\tObject dimensions: ")
 f.write(str([(max(map(max, x)) - min(map(min, x)) + 1)/wavelengthUnits for x in objectRange]))

Simulation

[7]:

from IPython.display import clear_output # only necessary in jupyter notebooks
for i in range(400):
 grid.step() # running simulation 1 timestep a time and animating
 if i % 10 == 0:
 # saving frames during visualization
 grid.visualize(z=0, animate=True, index=i, save=True, folder=simfolder)
 plt.title(f"{i:3.0f}")
 clear_output(wait=True) # only necessary in jupyter notebooks

grid.save_data() # saving detector readings

[image: ../_images/examples_05-lenses-and-analysing-lensing-actions_14_0.png]

We can generate a video with ffmpeg:

[8]:

try:
 video_path = grid.generate_video(delete_frames=False) # rendering video from saved frames
except:
 video_path = ""
 print("ffmpeg not installed?")

ffmpeg not installed?

[9]:

if video_path:
 from IPython.display import Video
 display(Video(video_path, embed=True))

Analyse

analysing data stored by above simulation by plotting a 2D decibel map

[10]:

df = np.load(os.path.join(simfolder, "detector_readings.npz"))
fdtd.dB_map_2D(df["detector (E)"])

100%|██████████| 121/121 [00:01<00:00, 87.17it/s]

Peak at: [[[45, 20]]]

[image: ../_images/examples_05-lenses-and-analysing-lensing-actions_19_2.png]

06. GRIN medium and analysing refraction

submitted by substancia [https://github.com/substancia], adapted by flaport [https://github.com/flaport]

Imports

[1]:

import os
import fdtd
import numpy as np
import matplotlib.pyplot as plt

Grid

[2]:

grid = fdtd.Grid(shape=(9.3e-6, 15.5e-6, 1), grid_spacing=77.5e-9)
x boundaries
grid[0:10, :, :] = fdtd.PML(name="pml_xlow")
grid[-10:, :, :] = fdtd.PML(name="pml_xhigh")
y boundaries
grid[:, 0:10, :] = fdtd.PML(name="pml_ylow")
grid[:, -10:, :] = fdtd.PML(name="pml_yhigh")
simfolder = grid.save_simulation("GRIN") # initializing environment to save simulation data
print(simfolder)

/home/docs/checkouts/readthedocs.org/user_builds/fdtd/checkouts/latest/docs/examples/fdtd_output/fdtd_output_2023-5-23-13-22-59 (GRIN)

Objects

defining a graded refractive index slab, with homogenous slab extensions outwards from both ends

[3]:

n0, theta, t = 1, 30, 0.5
for i in range(50):
 x = i * 0.08
 epsilon = n0 + x * np.sin(np.radians(theta)) / t
 epsilon = epsilon ** 0.5
 grid[
 5.1e-6:5.6e-6, (5 + i * 0.08) * 1e-6 : (5.08 + i * 0.08) * 1e-6, 0
] = fdtd.Object(permittivity=epsilon, name="object" + str(i))

homogenous slab extensions
grid[5.1e-6:5.6e-6, 0.775e-6:5e-6, 0] = fdtd.Object(
 permittivity=n0 ** 2, name="objectLeft"
)
grid[5.1e-6:5.6e-6, 9e-6 : (15.5 - 0.775) * 1e-6, 0] = fdtd.Object(
 permittivity=epsilon, name="objectRight"
)

Source

using a pulse (hanning window pulse)

[4]:

grid[3.1e-6, 1.5e-6:14e-6, 0] = fdtd.LineSource(period=1550e-9 / (3e8), name="source", pulse=True, cycle=3, hanning_dt=4e-15)

Detectors

using a linear array of LineDetector

[5]:

for i in range(-4, 8):
 grid[5.8e-6, 84 + 4 * i : 86 + 4 * i, 0] = fdtd.LineDetector(name="detector" + str(i))

Saving grid geometry

[6]:

with open(os.path.join("./fdtd_output", grid.folder, "grid.txt"), "w") as f:
 f.write(str(grid))
 wavelength = 3e8/grid.source.frequency
 wavelengthUnits = wavelength/grid.grid_spacing
 GD = np.array([grid.x, grid.y, grid.z])
 gridRange = [np.arange(x/grid.grid_spacing) for x in GD]
 objectRange = np.array([[gridRange[0][x.x], gridRange[1][x.y], gridRange[2][x.z]] for x in grid.objects], dtype=object).T
 f.write("\n\nGrid details (in wavelength scale):")
 f.write("\n\tGrid dimensions: ")
 f.write(str(GD/wavelength))
 f.write("\n\tSource dimensions: ")
 f.write(str(np.array([grid.source.x[-1] - grid.source.x[0] + 1, grid.source.y[-1] - grid.source.y[0] + 1, grid.source.z[-1] - grid.source.z[0] + 1])/wavelengthUnits))
 f.write("\n\tObject dimensions: ")
 f.write(str([(max(map(max, x)) - min(map(min, x)) + 1)/wavelengthUnits for x in objectRange]))

Simulation

[7]:

from IPython.display import clear_output # only necessary in jupyter notebooks

for i in range(100):
 grid.step() # running simulation 1 timestep a time and animating
 if i % 5 == 0:
 # saving frames during visualization
 grid.visualize(z=0, animate=True, index=i, save=True, folder=simfolder)
 plt.title(f"{i:3.0f}")
 clear_output(wait=True) # only necessary in jupyter notebooks
grid.save_data() # saving detector readings

[image: ../_images/examples_06-GRIN-medium-and-analysing-refraction_14_0.png]

We can generate a video with ffmpeg:

[8]:

try:
 video_path = grid.generate_video(delete_frames=False) # rendering video from saved frames
except:
 video_path = ""
 print("ffmpeg not installed?")

ffmpeg not installed?

[9]:

if video_path:
 from IPython.display import Video
 display(Video(video_path, embed=True))

Analyse

analysing data stored by above simulation to find intensity profile and time-of-arrival plot

[10]:

dic = np.load(os.path.join(simfolder, "detector_readings.npz"))
import warnings; warnings.filterwarnings("ignore") # TODO: fix plot_detection to prevent warnings
fdtd.plot_detection(dic)

[image: ../_images/examples_06-GRIN-medium-and-analysing-refraction_19_0.png]

[image: ../_images/examples_06-GRIN-medium-and-analysing-refraction_19_1.png]

[image: ../_images/examples_06-GRIN-medium-and-analysing-refraction_19_2.png]

[image: ../_images/examples_06-GRIN-medium-and-analysing-refraction_19_3.png]

fdtd package

backend module

Selects the backend for the fdtd-package.

The fdtd library allows to choose a backend. The numpy backend is the
default one, but there are also several additional PyTorch backends:

	numpy (defaults to float64 arrays)

	torch (defaults to float64 tensors)

	torch.float32

	torch.float64

	torch.cuda (defaults to float64 tensors)

	torch.cuda.float32

	torch.cuda.float64

For example, this is how to choose the “torch” backend:

fdtd.set_backend("torch")

In general, the numpy backend is preferred for standard CPU calculations
with “float64” precision. In general, float64 precision is always
preferred over float32 for FDTD simulations, however, float32 might
give a significant performance boost.

The cuda backends are only available for computers with a GPU.

	
class fdtd.backend.Backend

	Bases: object

Backend Base Class

	
pi = 3.141592653589793

	

	
class fdtd.backend.NumpyBackend

	Bases: Backend

Numpy Backend

	
arange([start,]stop, [step,]dtype=None, *, like=None)

	create a range of values

	
array()

	create an array from an array-like sequence

	
asarray(a, dtype=None, order=None, *, like=None)

	Convert the input to an array.

	Parameters:

	
	a (array_like) – Input data, in any form that can be converted to an array. This
includes lists, lists of tuples, tuples, tuples of tuples, tuples
of lists and ndarrays.

	dtype (data-type, optional) – By default, the data-type is inferred from the input data.

	order ({'C', 'F', 'A', 'K'}, optional) – Memory layout. ‘A’ and ‘K’ depend on the order of input array a.
‘C’ row-major (C-style),
‘F’ column-major (Fortran-style) memory representation.
‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise
‘K’ (keep) preserve input order
Defaults to ‘K’.

	like (array_like, optional) – Reference object to allow the creation of arrays which are not
NumPy arrays. If an array-like passed in as like supports
the __array_function__ protocol, the result will be defined
by it. In this case, it ensures the creation of an array object
compatible with that passed in via this argument.

New in version 1.20.0.

	Returns:

	out – Array interpretation of a. No copy is performed if the input
is already an ndarray with matching dtype and order. If a is a
subclass of ndarray, a base class ndarray is returned.

	Return type:

	ndarray

See also

	asanyarray
	Similar function which passes through subclasses.

	ascontiguousarray
	Convert input to a contiguous array.

	asfarray
	Convert input to a floating point ndarray.

	asfortranarray
	Convert input to an ndarray with column-major memory order.

	asarray_chkfinite
	Similar function which checks input for NaNs and Infs.

	fromiter
	Create an array from an iterator.

	fromfunction
	Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray)
True
>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True

	
static bmm(arr1, arr2)

	batch matrix multiply two arrays

	
static broadcast_arrays(*args, subok=False)

	broadcast arrays

	
static broadcast_to(array, shape, subok=False)

	broadcast array into shape

	
complex

	complex type for array

alias of complex128

	
cos = <ufunc 'cos'>

	cosine of all elements in array

	
divide = <ufunc 'divide'>

	

	
exp = <ufunc 'exp'>

	exponential of all elements in array

	
static fft(a, n=None, axis=-1, norm=None)

	Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].

	Parameters:

	
	a (array_like) – Input array, can be complex.

	n (int, optional) – Length of the transformed axis of the output.
If n is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

	axis (int, optional) – Axis over which to compute the FFT. If not given, the last axis is
used.

	norm ({"backward", "ortho", "forward"}, optional) –
New in version 1.10.0.

Normalization mode (see numpy.fft). Default is “backward”.
Indicates which direction of the forward/backward pair of transforms
is scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

	Returns:

	out – The truncated or zero-padded input, transformed along the axis
indicated by axis, or the last one if axis is not specified.

	Return type:

	complex ndarray

	Raises:

	IndexError – If axis is not a valid axis of a.

See also

	numpy.fft
	for definition of the DFT and conventions used.

	ifft
	The inverse of fft.

	fft2
	The two-dimensional FFT.

	fftn
	The n-dimensional FFT.

	rfftn
	The n-dimensional FFT of real input.

	fftfreq
	Frequency bins for given FFT parameters.

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when n is a power of 2, and
the transform is therefore most efficient for these sizes.

The DFT is defined, with the conventions used in this implementation, in
the documentation for the numpy.fft module.

References

[CT]
Cooley, James W., and John W. Tukey, 1965, “An algorithm for the
machine calculation of complex Fourier series,” Math. Comput.
19: 297-301.

Examples

>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,
 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
 -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])

In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the numpy.fft documentation:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

	
static fftfreq(n, d=1.0)

	Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

	Parameters:

	
	n (int) – Window length.

	d (scalar, optional) – Sample spacing (inverse of the sampling rate). Defaults to 1.

	Returns:

	f – Array of length n containing the sample frequencies.

	Return type:

	ndarray

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])

	
float

	floating type for array

alias of float64

	
int

	integer type for array

alias of int64

	
static is_array(arr)

	check if an object is an array

	
linspace(stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)

	create a linearly spaced array between two points

	
static max(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)

	max element in array

	
numpy()

	convert the array to numpy array

	
ones(dtype=None, order='C', *, like=None)

	create an array filled with ones

	
static pad(array, pad_width, mode='constant', **kwargs)

	Pad an array.

	Parameters:

	
	array (array_like of rank N) – The array to pad.

	pad_width ({sequence, array_like, int}) – Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
(before, after) or ((before, after),) yields same before
and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width
for all axes.

	mode (str or function, optional) – One of the following string values or a user supplied function.

	’constant’ (default)
	Pads with a constant value.

	’edge’
	Pads with the edge values of array.

	’linear_ramp’
	Pads with the linear ramp between end_value and the
array edge value.

	’maximum’
	Pads with the maximum value of all or part of the
vector along each axis.

	’mean’
	Pads with the mean value of all or part of the
vector along each axis.

	’median’
	Pads with the median value of all or part of the
vector along each axis.

	’minimum’
	Pads with the minimum value of all or part of the
vector along each axis.

	’reflect’
	Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.

	’symmetric’
	Pads with the reflection of the vector mirrored
along the edge of the array.

	’wrap’
	Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.

	’empty’
	Pads with undefined values.

New in version 1.17.

	<function>
	Padding function, see Notes.

	stat_length (sequence or int, optional) – Used in ‘maximum’, ‘mean’, ‘median’, and ‘minimum’. Number of
values at edge of each axis used to calculate the statistic value.

((before_1, after_1), ... (before_N, after_N)) unique statistic
lengths for each axis.

(before, after) or ((before, after),) yields same before
and after statistic lengths for each axis.

(stat_length,) or int is a shortcut for
before = after = statistic length for all axes.

Default is None, to use the entire axis.

	constant_values (sequence or scalar, optional) – Used in ‘constant’. The values to set the padded values for each
axis.

((before_1, after_1), ... (before_N, after_N)) unique pad constants
for each axis.

(before, after) or ((before, after),) yields same before
and after constants for each axis.

(constant,) or constant is a shortcut for
before = after = constant for all axes.

Default is 0.

	end_values (sequence or scalar, optional) – Used in ‘linear_ramp’. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.

((before_1, after_1), ... (before_N, after_N)) unique end values
for each axis.

(before, after) or ((before, after),) yields same before
and after end values for each axis.

(constant,) or constant is a shortcut for
before = after = constant for all axes.

Default is 0.

	reflect_type ({'even', 'odd'}, optional) – Used in ‘reflect’, and ‘symmetric’. The ‘even’ style is the
default with an unaltered reflection around the edge value. For
the ‘odd’ style, the extended part of the array is created by
subtracting the reflected values from two times the edge value.

	Returns:

	pad – Padded array of rank equal to array with shape increased
according to pad_width.

	Return type:

	ndarray

Notes

New in version 1.7.0.

For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.

The padding function, if used, should modify a rank 1 array in-place. It
has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

	vectorndarray
	A rank 1 array already padded with zeros. Padded values are
vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].

	iaxis_pad_widthtuple
	A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.

	iaxisint
	The axis currently being calculated.

	kwargsdict
	Any keyword arguments the function requires.

Examples

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])

>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1],
 [3, 3, 3, 4, 3, 3, 3],
 [1, 1, 1, 2, 1, 1, 1],
 [1, 1, 1, 2, 1, 1, 1]])

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
 [10, 10, 10, 10, 10, 10, 10],
 [10, 10, 0, 1, 2, 10, 10],
 [10, 10, 3, 4, 5, 10, 10],
 [10, 10, 10, 10, 10, 10, 10],
 [10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
 [100, 100, 100, 100, 100, 100, 100],
 [100, 100, 0, 1, 2, 100, 100],
 [100, 100, 3, 4, 5, 100, 100],
 [100, 100, 100, 100, 100, 100, 100],
 [100, 100, 100, 100, 100, 100, 100]])

	
static reshape(a, newshape, order='C')

	reshape array into given shape

	
sin = <ufunc 'sin'>

	sine of all elements in array

	
static squeeze(a, axis=None)

	remove dim-1 dimensions

	
static stack(arrays, axis=0, out=None, *, dtype=None, casting='same_kind')

	stack multiple arrays

	
static sum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)

	sum elements in array

	
static transpose(a, axes=None)

	transpose array by flipping two dimensions

	
zeros(shape, dtype=float, order='C', *, like=None)

	create an array filled with zeros

	
static zeros_like(a, dtype=None, order='K', subok=True, shape=None)

	create an array filled with zeros

	
fdtd.backend.set_backend(name: str)

	Set the backend for the FDTD simulations

This function monkeypatches the backend object by changing its class.
This way, all methods of the backend object will be replaced.

	Parameters:

	name – name of the backend. Allowed backend names:
- numpy (defaults to float64 arrays)
- numpy.float16
- numpy.float32
- numpy.float64
- numpy.float128
- torch (defaults to float64 tensors)
- torch.float16
- torch.float32
- torch.float64
- torch.cuda (defaults to float64 tensors)
- torch.cuda.float16
- torch.cuda.float32
- torch.cuda.float64

boundaries module

Boundaries for the FDTD Grid.

Available Boundaries:

	PeriodicBoundary

	PML

	
class fdtd.boundaries.Boundary(name: str | None = None)

	Bases: object

an FDTD Boundary [base class]

	
__init__(name: str | None = None)

	Create a boundary

	Parameters:

	name – name of the boundary

	
promote_dtypes_to_complex()

	

	
update_E()

	Update electric field of the grid

Note

this method is called after the grid fields are updated

	
update_H()

	Update magnetic field of the grid

Note

this method is called after the grid fields are updated

	
update_phi_E()

	Update convolution [phi_E]

Note

this method is called before the electric field is updated

	
update_phi_H()

	Update convolution [phi_H]

Note

this method is called before the magnetic field is updated

	
fdtd.boundaries.DomainBorderPML(grid, border_cells=5)

	Some problem setups require a layer of PML all the way around the problem.
This is a convenience function to add such a layer to an existing grid.
Caution: Alters grid in-place.

	
class fdtd.boundaries.PML(a: float = 1e-08, name: str | None = None)

	Bases: Boundary

A perfectly matched layer (PML)

a PML is an impedence-matched area at the boundary of the grid for which
all fields incident perpendicular to the area are absorbed without
reflection.

Note

Registering a PML to the grid will monkeypatch the PML to become one of
its subclasses: _PMLXlow, _PMLYlow or _PMLZlow,
_PMLXhigh, _PMLYhigh, _PMLZhigh depending on the position
in the grid.

	
__init__(a: float = 1e-08, name: str | None = None)

	Perfectly Matched Layer

	Parameters:

	
	a – stability parameter

	name – name of the PML

	
update_E()

	Update electric field of the grid

Note

this method is called after the electric field is updated

	
update_H()

	Update magnetic field of the grid

Note

this method is called after the magnetic field is updated

	
update_phi_E()

	Update convolution [phi_E]

Note

this method is called before the electric field is updated

	
update_phi_H()

	Update convolution [phi_H]

Note

this method is called before the magnetic field is updated

	
class fdtd.boundaries.PeriodicBoundary(name: str | None = None)

	Bases: Boundary

An FDTD Periodic Boundary

Note

Registering a periodic boundary to the grid will change the periodic
boundary in one of its subclasses: _PeriodicBoundaryX,
_PeriodicBoundaryY or _PeriodicBoundaryY, depending on the
position in the grid.

detectors module

Detectors for the FDTD Grid.

Available Detectors:

	LineDetector

	
class fdtd.detectors.BlockDetector(name=None)

	Bases: object

A detector along a block in the FDTD grid

	
__init__(name=None)

	Create a block detector

	Parameters:

	name – name of the Detector

	
detect_E()

	detect the electric field at a certain location in the grid

	
detect_H()

	detect the magnetic field at a certain location in the grid

	
detector_values()

	outputs what detector detects

	
class fdtd.detectors.CurrentDetector(name=None)

	Bases: object

A current detector.

	
__init__(name=None)

	Create a block detector

	Parameters:

	name – name of the Detector

	
detect_E()

	detect the electric field at a certain location in the grid

	
detect_H()

	

	
detector_values()

	outputs what detector detects

	
single_point_current(px, py, pz)

	Only Z-polarized for now. Can probably do a cross product to get arbitrary polarizations

^

X—->

TODO: FIXME: IMPORTANT:
material magnetic permeability? find test cases!

Implements the first correction from [Fang 1994] (two
cells are spatially averaged to account for Yee cell half-step inaccuracies),
but not the second one (minor loss of accuracy).

Jiayuan Fang, Danwei Xue.
Precautions in the calculation of impedance in FDTD computations.
Proceedings of IEEE Antennas and Propagation Society International Symposium
and URSI National Radio Science Meeting, vol. 3, 1994, p. 1814–7 vol.3.
https://doi.org/10.1109/APS.1994.408185.

Luebbers RJ, Langdon HS.
A simple feed model that reduces time steps needed for
FDTD antenna and microstrip calculations.
IEEE Trans Antennas Propagat 1996;44:1000–5.
https://doi.org/10.1109/8.504308.

	
class fdtd.detectors.LineDetector(name=None)

	Bases: object

A detector along a line in the FDTD grid

	
__init__(name=None)

	Create a line detector

	Parameters:

	name – name of the Detector

	
detect_E()

	detect the electric field at a certain location in the grid

	
detect_H()

	detect the magnetic field at a certain location in the grid

	
detector_values()

	outputs what detector detects

grid module

The FDTD Grid

The grid is the core of the FDTD Library. It is where everything comes
together and where the biggest part of the calculations are done.

	
class fdtd.grid.Grid(shape: Tuple[Number, Number, Number], grid_spacing: float = 1.55e-07, permittivity: float = 1.0, permeability: float = 1.0, courant_number: float | None = None)

	Bases: object

The FDTD Grid

The grid is the core of the FDTD Library. It is where everything comes
together and where the biggest part of the calculations are done.

	
__init__(shape: Tuple[Number, Number, Number], grid_spacing: float = 1.55e-07, permittivity: float = 1.0, permeability: float = 1.0, courant_number: float | None = None)

	
	Parameters:

	
	shape – shape of the FDTD grid.

	grid_spacing – distance between the grid cells.

	permittivity – the relative permittivity of the background.

	permeability – the relative permeability of the background.

	courant_number – the courant number of the FDTD simulation.
Defaults to the inverse of the square root of the number of
dimensions > 1 (optimal value). The timestep of the simulation
will be derived from this number using the CFL-condition.

	
add_boundary(name, boundary)

	add a boundary to the grid

	
add_detector(name, detector)

	add a detector to the grid

	
add_object(name, obj)

	add an object to the grid

	
add_source(name, source)

	add a source to the grid

	
generate_video(delete_frames=False)

	Compiles frames into a video

These framed should be saved through fdtd.Grid.visualize(save=True) while having fdtd.Grid.save_simulation() enabled.

	Parameters:

	delete_frames (optional, bool) – delete stored frames after conversion to video.

	Returns:

	the filename of the generated video.

Note

this function requires ffmpeg to be available in your path.

	
promote_dtypes_to_complex()

	

	
reset()

	reset the grid by setting all fields to zero

	
run(total_time: Number, progress_bar: bool = True)

	run an FDTD simulation.

	Parameters:

	
	total_time – the total time for the simulation to run.

	progress_bar – choose to show a progress bar during
simulation

	
save_data()

	Saves readings from all detectors in the grid into a numpy zip file. Each detector is stored in separate arrays. Electric and magnetic field field readings of each detector are also stored separately with suffix ” (E)” and ” (H)” (Example: [‘detector0 (E)’, ‘detector0 (H)’]). Therefore, the numpy zip file contains arrays twice the number of detectors.
REQUIRES ‘fdtd.Grid.save_simulation()’ to be run before this function.

Parameters: None

	
save_simulation(sim_name=None)

	Creates a folder and initializes environment to store simulation or related details.
saveSimulation() needs to be run before running any function that stores data (generate_video(), save_data()).

	Parameters:-
	(optional) sim_name (string): Preferred name for simulation

	
property shape: Tuple[int, int, int]

	get the shape of the FDTD grid

	
step()

	do a single FDTD step by first updating the electric field and then
updating the magnetic field

	
property time_passed: float

	get the total time passed

	
update_E()

	update the electric field by using the curl of the magnetic field

	
update_H()

	update the magnetic field by using the curl of the electric field

	
visualize(x=None, y=None, z=None, cmap='Blues', pbcolor='C3', pmlcolor=(0, 0, 0, 0.1), objcolor=(1, 0, 0, 0.1), srccolor='C0', detcolor='C2', norm='linear', show=False, animate=False, index=None, save=False, folder=None)

	visualize a projection of the grid and the optical energy inside the grid

	Parameters:

	
	x – the x-value to make the yz-projection (leave None if using different projection)

	y – the y-value to make the zx-projection (leave None if using different projection)

	z – the z-value to make the xy-projection (leave None if using different projection)

	cmap – the colormap to visualize the energy in the grid

	pbcolor – the color to visualize the periodic boundaries

	pmlcolor – the color to visualize the PML

	objcolor – the color to visualize the objects in the grid

	srccolor – the color to visualize the sources in the grid

	detcolor – the color to visualize the detectors in the grid

	norm – how to normalize the grid_energy color map (‘linear’ or ‘log’).

	show – call pyplot.show() at the end of the function

	animate – see frame by frame state of grid during simulation

	index – index for each frame of animation (typically a loop variable is passed)

	save – save frames in a folder

	folder – path to folder to save frames

	
property x: int

	get the number of grid cells in the x-direction

	
property y: int

	get the number of grid cells in the y-direction

	
property z: int

	get the number of grid cells in the y-direction

	
fdtd.grid.curl_E(E: ndarray) → ndarray

	Transforms an E-type field into an H-type field by performing a curl
operation

	Parameters:

	E – Electric field to take the curl of (E-type field located on the
edges of the grid cell [integer gridpoints])

	Returns:

	The curl of E (H-type field located on the faces of the grid [half-integer grid points])

	
fdtd.grid.curl_H(H: ndarray) → ndarray

	Transforms an H-type field into an E-type field by performing a curl
operation

	Parameters:

	H – Magnetic field to take the curl of (H-type field located on half-integer grid points)

	Returns:

	The curl of H (E-type field located on the edges of the grid [integer grid points])

objects module

The objects to place in the grid.

Objects define all the regions in the grid with a modified update equation,
such as for example regions with anisotropic permittivity etc.

	Available Objects:
	
	Object

	AnisotropicObject

	
class fdtd.objects.AbsorbingObject(permittivity: ndarray, conductivity: ndarray, name: str | None = None)

	Bases: Object

An absorbing object takes conductivity into account

	
__init__(permittivity: ndarray, conductivity: ndarray, name: str | None = None)

	
	Parameters:

	
	permittivity – permittivity tensor

	conductivity – conductivity tensor (will introduce the loss)

	name – name of the object (will become available as attribute to the grid)

	
update_E(curl_H)

	custom update equations for inside the absorbing object

	Parameters:

	curl_H – the curl of magnetic field in the grid.

	
update_H(curl_E)

	custom update equations for inside the absorbing object

	Parameters:

	curl_E – the curl of electric field in the grid.

	
class fdtd.objects.AnisotropicObject(permittivity: ndarray, name: str | None = None)

	Bases: Object

An object with anisotropic permittivity tensor

	
update_E(curl_H)

	custom update equations for inside the anisotropic object

	Parameters:

	curl_H – the curl of magnetic field in the grid.

	
update_H(curl_E)

	custom update equations for inside the anisotropic object

	Parameters:

	curl_E – the curl of electric field in the grid.

	
class fdtd.objects.Object(permittivity: ndarray, name: str | None = None)

	Bases: object

An object to place in the grid

	
__init__(permittivity: ndarray, name: str | None = None)

	
	Parameters:

	
	permittivity – permittivity tensor

	name – name of the object (will become available as attribute to the grid)

	
update_E(curl_H)

	custom update equations for inside the object

	Parameters:

	curl_H – the curl of magnetic field in the grid.

	
update_H(curl_E)

	custom update equations for inside the object

	Parameters:

	curl_E – the curl of electric field in the grid.

sources module

Sources are objects that inject the fields into the grid.

Available sources:

	PointSource

	LineSource

	
class fdtd.sources.LineSource(period: Number = 15, amplitude: float = 1.0, phase_shift: float = 0.0, name: str | None = None, pulse: bool = False, cycle: int = 5, hanning_dt: float = 10.0)

	Bases: object

A source along a line in the FDTD grid

	
__init__(period: Number = 15, amplitude: float = 1.0, phase_shift: float = 0.0, name: str | None = None, pulse: bool = False, cycle: int = 5, hanning_dt: float = 10.0)

	Create a LineSource with a gaussian profile

	Parameters:

	
	period – The period of the source. The period can be specified
as integer [timesteps] or as float [seconds]

	amplitude – The amplitude of the source in simulation units

	phase_shift – The phase offset of the source.

	pulse – Set True to use a Hanning window pulse instead of continuous wavefunction.

	cycle – cycles for Hanning window pulse.

	hanning_dt – timestep used for Hanning window pulse width (optional).

	
update_E()

	Add the source to the electric field

	
update_H()

	Add the source to the magnetic field

	
class fdtd.sources.PlaneSource(period: Number = 15, amplitude: float = 1.0, phase_shift: float = 0.0, name: str | None = None, polarization: str = 'z')

	Bases: object

A source along a plane in the FDTD grid

	
__init__(period: Number = 15, amplitude: float = 1.0, phase_shift: float = 0.0, name: str | None = None, polarization: str = 'z')

	Create a PlaneSource.

	Parameters:

	
	period – The period of the source. The period can be specified
as integer [timesteps] or as float [seconds]

	amplitude – The amplitude of the source in simulation units

	phase_shift – The phase offset of the source.

	polarization – Axis of E-field polarization (‘x’,’y’,or ‘z’)

	
update_E()

	Add the source to the electric field

	
update_H()

	Add the source to the magnetic field

	
class fdtd.sources.PointSource(period: Number = 15, amplitude: float = 1.0, phase_shift: float = 0.0, name: str | None = None, pulse: bool = False, cycle: int = 5, hanning_dt: float = 10.0)

	Bases: object

A source placed at a single point (grid cell) in the grid

	
__init__(period: Number = 15, amplitude: float = 1.0, phase_shift: float = 0.0, name: str | None = None, pulse: bool = False, cycle: int = 5, hanning_dt: float = 10.0)

	Create a LineSource with a gaussian profile

	Parameters:

	
	period – The period of the source. The period can be specified
as integer [timesteps] or as float [seconds]

	amplitude – The electric field amplitude in simulation units

	phase_shift – The phase offset of the source.

	name – name of the source.

	pulse – Set True to use a Hanning window pulse instead of continuous wavefunction.

	cycle – cycles for Hanning window pulse.

	hanning_dt – timestep used for Hanning window pulse width (optional).

	
update_E()

	Add the source to the electric field

	
update_H()

	Add the source to the magnetic field

	
class fdtd.sources.SoftArbitraryPointSource(waveform_array: ndarray, name: str | None = None, impedance: float = 0.0)

	Bases: object

A source placed at a single point (grid cell) in the grid.
This source is special: it’s both a source and a detector.

Unlike the other sources, the input is a voltage, not an electric field.
(really? why? should we convert back and forth?)

For electrical measurements I’ve only needed a single-index source,
so I don’t know how the volume/line sources above work.
We want the FFT function to operate over any detector.
Maybe all sources should take an arbitary waveform argument?

Each index in the waveform array represents 1 value at a timestep.

There are many different geometries of “equivalent sources”.
The detector/source paradigm used in /fdtd might perhaps not correspond to this in an ideal
fashion.

It’s not intuitively clear to me what a “soft” source would imply in the optical case, or what
impedance even means for a laser.

/fdtd/ seems to have found primary use in optical circles,
so the default Z should probably be 0.

“Whilst established for microwaves and electrical circuits,
this concept has only very recently been observed in the optical domain,
yet is not well defined or understood.”[1]

[1]: Optical impedance of metallic nano-structures, M. Mazilu and K. Dholakia
https://doi.org/10.1364/OE.14.007709

[2]: http://www.gwoptics.org/learn/02_Plane_waves/01_Fabry_Perot_cavity/02_Impedance_matched.php

//-

	
__init__(waveform_array: ndarray, name: str | None = None, impedance: float = 0.0)

	Create

	Parameters:

	waveform_array –

	
update_E()

	

	
update_H()

	

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fdtd	

 	
 	
 fdtd.backend	

 	
 	
 fdtd.boundaries	

 	
 	
 fdtd.detectors	

 	
 	
 fdtd.grid	

 	
 	
 fdtd.objects	

 	
 	
 fdtd.sources	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X
 | Y
 | Z

_

 	
 	__init__() (fdtd.boundaries.Boundary method)

 	(fdtd.boundaries.PML method)

 	(fdtd.detectors.BlockDetector method)

 	(fdtd.detectors.CurrentDetector method)

 	(fdtd.detectors.LineDetector method)

 	(fdtd.grid.Grid method)

 	(fdtd.objects.AbsorbingObject method)

 	(fdtd.objects.Object method)

 	(fdtd.sources.LineSource method)

 	(fdtd.sources.PlaneSource method)

 	(fdtd.sources.PointSource method)

 	(fdtd.sources.SoftArbitraryPointSource method)

A

 	
 	AbsorbingObject (class in fdtd.objects)

 	add_boundary() (fdtd.grid.Grid method)

 	add_detector() (fdtd.grid.Grid method)

 	add_object() (fdtd.grid.Grid method)

 	
 	add_source() (fdtd.grid.Grid method)

 	AnisotropicObject (class in fdtd.objects)

 	arange() (fdtd.backend.NumpyBackend method)

 	array() (fdtd.backend.NumpyBackend method)

 	asarray() (fdtd.backend.NumpyBackend method)

B

 	
 	Backend (class in fdtd.backend)

 	BlockDetector (class in fdtd.detectors)

 	bmm() (fdtd.backend.NumpyBackend static method)

 	
 	Boundary (class in fdtd.boundaries)

 	broadcast_arrays() (fdtd.backend.NumpyBackend static method)

 	broadcast_to() (fdtd.backend.NumpyBackend static method)

C

 	
 	complex (fdtd.backend.NumpyBackend attribute)

 	cos (fdtd.backend.NumpyBackend attribute)

 	
 	curl_E() (in module fdtd.grid)

 	curl_H() (in module fdtd.grid)

 	CurrentDetector (class in fdtd.detectors)

D

 	
 	detect_E() (fdtd.detectors.BlockDetector method)

 	(fdtd.detectors.CurrentDetector method)

 	(fdtd.detectors.LineDetector method)

 	detect_H() (fdtd.detectors.BlockDetector method)

 	(fdtd.detectors.CurrentDetector method)

 	(fdtd.detectors.LineDetector method)

 	
 	detector_values() (fdtd.detectors.BlockDetector method)

 	(fdtd.detectors.CurrentDetector method)

 	(fdtd.detectors.LineDetector method)

 	divide (fdtd.backend.NumpyBackend attribute)

 	DomainBorderPML() (in module fdtd.boundaries)

E

 	
 	exp (fdtd.backend.NumpyBackend attribute)

F

 	
 	
 fdtd.backend

 	module

 	
 fdtd.boundaries

 	module

 	
 fdtd.detectors

 	module

 	
 fdtd.grid

 	module

 	
 	
 fdtd.objects

 	module

 	
 fdtd.sources

 	module

 	fft() (fdtd.backend.NumpyBackend static method)

 	fftfreq() (fdtd.backend.NumpyBackend static method)

 	float (fdtd.backend.NumpyBackend attribute)

G

 	
 	generate_video() (fdtd.grid.Grid method)

 	
 	Grid (class in fdtd.grid)

I

 	
 	int (fdtd.backend.NumpyBackend attribute)

 	
 	is_array() (fdtd.backend.NumpyBackend static method)

L

 	
 	LineDetector (class in fdtd.detectors)

 	
 	LineSource (class in fdtd.sources)

 	linspace() (fdtd.backend.NumpyBackend method)

M

 	
 	max() (fdtd.backend.NumpyBackend static method)

 	
 module

 	fdtd.backend

 	fdtd.boundaries

 	fdtd.detectors

 	fdtd.grid

 	fdtd.objects

 	fdtd.sources

N

 	
 	numpy() (fdtd.backend.NumpyBackend method)

 	
 	NumpyBackend (class in fdtd.backend)

O

 	
 	Object (class in fdtd.objects)

 	
 	ones() (fdtd.backend.NumpyBackend method)

P

 	
 	pad() (fdtd.backend.NumpyBackend static method)

 	PeriodicBoundary (class in fdtd.boundaries)

 	pi (fdtd.backend.Backend attribute)

 	PlaneSource (class in fdtd.sources)

 	
 	PML (class in fdtd.boundaries)

 	PointSource (class in fdtd.sources)

 	promote_dtypes_to_complex() (fdtd.boundaries.Boundary method)

 	(fdtd.grid.Grid method)

R

 	
 	reset() (fdtd.grid.Grid method)

 	
 	reshape() (fdtd.backend.NumpyBackend static method)

 	run() (fdtd.grid.Grid method)

S

 	
 	save_data() (fdtd.grid.Grid method)

 	save_simulation() (fdtd.grid.Grid method)

 	set_backend() (in module fdtd.backend)

 	shape (fdtd.grid.Grid property)

 	sin (fdtd.backend.NumpyBackend attribute)

 	
 	single_point_current() (fdtd.detectors.CurrentDetector method)

 	SoftArbitraryPointSource (class in fdtd.sources)

 	squeeze() (fdtd.backend.NumpyBackend static method)

 	stack() (fdtd.backend.NumpyBackend static method)

 	step() (fdtd.grid.Grid method)

 	sum() (fdtd.backend.NumpyBackend static method)

T

 	
 	time_passed (fdtd.grid.Grid property)

 	
 	transpose() (fdtd.backend.NumpyBackend static method)

U

 	
 	update_E() (fdtd.boundaries.Boundary method)

 	(fdtd.boundaries.PML method)

 	(fdtd.grid.Grid method)

 	(fdtd.objects.AbsorbingObject method)

 	(fdtd.objects.AnisotropicObject method)

 	(fdtd.objects.Object method)

 	(fdtd.sources.LineSource method)

 	(fdtd.sources.PlaneSource method)

 	(fdtd.sources.PointSource method)

 	(fdtd.sources.SoftArbitraryPointSource method)

 	update_H() (fdtd.boundaries.Boundary method)

 	(fdtd.boundaries.PML method)

 	(fdtd.grid.Grid method)

 	(fdtd.objects.AbsorbingObject method)

 	(fdtd.objects.AnisotropicObject method)

 	(fdtd.objects.Object method)

 	(fdtd.sources.LineSource method)

 	(fdtd.sources.PlaneSource method)

 	(fdtd.sources.PointSource method)

 	(fdtd.sources.SoftArbitraryPointSource method)

 	
 	update_phi_E() (fdtd.boundaries.Boundary method)

 	(fdtd.boundaries.PML method)

 	update_phi_H() (fdtd.boundaries.Boundary method)

 	(fdtd.boundaries.PML method)

V

 	
 	visualize() (fdtd.grid.Grid method)

X

 	
 	x (fdtd.grid.Grid property)

Y

 	
 	y (fdtd.grid.Grid property)

Z

 	
 	z (fdtd.grid.Grid property)

 	
 	zeros() (fdtd.backend.NumpyBackend method)

 	zeros_like() (fdtd.backend.NumpyBackend static method)

 _images/examples_05-lenses-and-analysing-lensing-actions_19_2.png
dB map of Electrical waves in detector region
o
30

0.0

_images/examples_06-GRIN-medium-and-analysing-refraction_14_0.png
20

40

60

80

100

120

Objects
PML
95 —— Periodic Boundaries

= Sources
—— Detectors

25

50 7 100 125 150 175 200

_images/examples_04-performance-profiling_31_0.png
0 Objects

- PML
= Periodic Boundaries
I Sources
20 == Detectors
© — g S
60
80
100
[20 40 60 80 100

_images/examples_05-lenses-and-analysing-lensing-actions_14_0.png
100

150

200

250

390

ummﬂmmnmm

Objects
| PML
—— Periodic Boundaries
—— Sources
—— Detectors

50 100

150

200

_images/examples_06-GRIN-medium-and-analysing-refraction_19_2.png
detector7 ()

detector6 (E)

detectors (E)

detector4 (E)

detector3 ()

detector2 ()

detectorl (E)

detector0 ()

detector-1 (E)

detector-2 (E)

detector-3 (E)

detector-4 ()

Time-of-arrival plot

10

20

30

40
Time of arrival (time steps)

50

60

70

_images/examples_06-GRIN-medium-and-analysing-refraction_19_3.png
detector7 (H)

detector6 (H)

detectors (H)

detector4 (H)

detector3 (H)

detector2 (H)

detectorl (H)

detector0 (H)

detector-1 (H)

detector-2 (H)

detector-3 (H)

detector-4 (H)

Time-of-arrival plot

10

20

30

40
Time of arrival (time steps)

50

60

70

_images/examples_06-GRIN-medium-and-analysing-refraction_19_0.png
0.04

0.02

0.00

Magnitude

-0.02

-0.04

0.006

0.005

0.004

0.003

Magnitude

0.002

0.001

0.000

Intensity profile

E(x) Ely)
0.04
0.02
9
3
£ 000
g
2
-0.02
-0.04
20 40 60 80 100 20 40 60 80 100
Time steps Time steps
E(z)

20 40 60 80 100
Time steps

_images/examples_06-GRIN-medium-and-analysing-refraction_19_1.png
0.0008

0.0006

0.0004

Magnitude

0.0002

0.0000

0.04

0.02

0.00

Magnitude

-0.02

-0.04

H(x)

Intensity profile

Hly)

Magnitude

0.006

0.005

0.004

°
2
8

0.002

0.001

0.000

20

40
Time steps

H(z)

60

®
&

100

detector-4 (H)
detector-3 (H)
detector-2 (H)
detector-1 (H)
detector0 (H)
detectorl (H)
detector2 (H)
detector3 (H)
detector4 (H)
detectors (H)
detector6 (H)
detector7 (H)

20

40
Time steps

60

80 100

0 20 40 60 80 100
Time steps

_images/grid.png
20

40

60

80

100

120

140

160

25

50

7

Objects

PML
—— Periodic Boundaries
—— Sources
—— Detectors

_images/examples_01-basic-example_22_0.png
20

40

60

80

100

120

140

160

Objects
PML
—— Periodic Boundaries
—— Sources
—— Detectors

_images/examples_02-absorbing-object_10_0.png
Objects
PML
————————— . P0G BOUNGATIES

= Sources
—————— Dt CtOTS

°
n
3
8
o
3
@

0

_images/examples_00-quick-start_40_0.png
20

40

60

80

100

120

140

160

Objects
PML
—— Periodic Boundaries
—— Sources
—— Detectors

_images/examples_01-basic-example_21_0.png
Ez: xy
Ey: xy
Ex: xy

Hz: xy
Hy: xy
Hx: xy

_images/examples_03-objects-of-arbitrary-shape_11_0.png
Objects

[
PML
= Periodic Boundaries
50 —SOUrCES
== Detectors
100
* 150
200 7
n
250
300
[50 100 150 200 250 300

nav.xhtml

 Table of Contents

 		
 Python 3D FDTD Simulator

 		
 Examples

 		
 00. Quick Start

 		
 Imports

 		
 Setting the backend

 		
 The FDTD-grid

 		
 Adding an object to the grid

 		
 Adding a source to the grid

 		
 Adding a detector to the grid

 		
 Adding grid boundaries

 		
 Grid summary

 		
 Running a simulation

 		
 Grid visualization

 		
 01. Basic Example

 		
 Imports

 		
 Set Backend

 		
 Constants

 		
 Simulation

 		
 Run simulation

 		
 Visualization

 		
 02. Absorbing Object

 		
 Imports

 		
 Constants

 		
 Grid setup

 		
 Simulation without absorption:

 		
 Visualization

 		
 03. Objects of arbitrary shape

 		
 Imports

 		
 Grid Setup

 		
 Circular Object

 		
 Run Simulation

 		
 Visualize

 		
 04. Performance Profiling

 		
 Imports

 		
 Set Backend

 		
 Constants

 		
 Setup Simulation

 		
 Setup LineProfiler

 		
 Run Simulation

 		
 Profiler Results

 		
 Visualization

 		
 05. Lenses and analysing lensing actions

 		
 Imports

 		
 Grid

 		
 Objects

 		
 Source

 		
 Detectors

 		
 Simulation

 		
 Analyse

 		
 06. GRIN medium and analysing refraction

 		
 Imports

 		
 Grid

 		
 Objects

 		
 Source

 		
 Detectors

 		
 Saving grid geometry

 		
 Simulation

 		
 Analyse

 		
 fdtd package

 		
 backend module

 		
 Backend

 		
 NumpyBackend

 		
 set_backend()

 		
 boundaries module

 		
 Boundary

 		
 DomainBorderPML()

 		
 PML

 		
 PeriodicBoundary

 		
 detectors module

 		
 BlockDetector

 		
 CurrentDetector

 		
 LineDetector

 		
 grid module

 		
 Grid

 		
 curl_E()

 		
 curl_H()

 		
 objects module

 		
 AbsorbingObject

 		
 AnisotropicObject

 		
 Object

 		
 sources module

 		
 LineSource

 		
 PlaneSource

 		
 PointSource

 		
 SoftArbitraryPointSource

_static/minus.png

_static/file.png

_static/grid.png
20

40

60

80

100

120

140

160

25

50

7

Objects

PML
—— Periodic Boundaries
—— Sources
—— Detectors

_static/plus.png

